
EXPLORASI ALGORITMA C4.5 DAN FORWARD FEATURE SELECTION UNTUK MENENTUKAN DEBITUR BAIK DAN DEBITUR BERMASALAH PADA PRODUK KREDIT TANPA AGUNAN (KTA)
Author(s) -
Putu Gede Surya Cipta Nugraha,
Gede Surya Mahendra
Publication year - 2020
Publication title -
jurnal sains dan teknologi
Language(s) - English
Resource type - Journals
eISSN - 2548-8570
pISSN - 2303-3142
DOI - 10.23887/jst-undiksha.v9i1.24627
Subject(s) - physics
Produk kredit Bank Umum yang sangat diminati oleh Badan Usaha atau Organisai dan masyarakat salah satunya yaitu Kredit Tanpa Angunan (KTA), hal ini dikarenakan sistem kredit tidak membutuhkan jaminan dari debitur. Tetapi dalam jangka waktu proses kredit KTA tidak menutup kemungkinan debitur melakukan keterlambatan dalam melakukan pembayaran angsuran (menunggak) yang dikarenakan mengalami kegagalam dalam bisnis, kehilangan pekerjaan, uang digunakan untuk memenuhi kebutuhan lain serta berbagi macam alasan lainnya. Pada Bank ABC setiap nasabah yang terlambat melakukan pembayaran dapat dikelompokan menjadi Non Performance Loan (NPL) atau yang sering disebut dengan kredit macet. Untuk mengatasi permasalahan tersebut diterapkan bidang Ilmu Komputer yaitu Data Mining untuk memprediksi kriteria debitur yang baik dan debitur bermasalah. Adapun metode atau algoritma Data Mining yang digunakan adalah kombinasi dari algoritma C4.5 dan Forward Feature Selection. Pengujian algoritma C4.5 dalam memprediksi menghasilkan tingkat accuracy sebesar 92.00%, recall sebesar 92.00% dan precission sebesar 92.00%. Forward Feature Selection berbasis algoritma C4.5 lebih akurat dan efektif dalam memprediksi debitur yang baik dan debitur bermasalah dengan hasil accuracy sebesar 93.60%, recall sebesar 93.60%, precission sebesar 93.60% dan memperoleh atribut yang berpengaruh yaitu jangka waktu, maksimum kredit dan pekerjaan. Â