z-logo
open-access-imgOpen Access
Изометрии действительных подпространств самосопряженных операторов в банаховых симметричных идеалах
Author(s) -
B.R. Aminov,
V.I. Chilin
Publication year - 2019
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2019.21.44607
Subject(s) - separable space , combinatorics , ideal (ethics) , banach space , hermitian matrix , dual polyhedron , mathematics , physics , discrete mathematics , pure mathematics , mathematical analysis , philosophy , epistemology
Let (mathcal C_E, cdot_mathcal C_E) be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space mathcal H. Let mathcal C_Ehxin mathcal C_E : xx be the real Banach subspace of self-adjoint operators in (mathcal C_E, cdot_mathcal C_E). We show that in the case when (mathcal C_E, cdot_mathcal C_E) is a separable or perfect Banach symmetric ideal (mathcal C_E eq mathcal C_2) any skew-Hermitian operator H: mathcal C_Ehto mathcal C_Eh has the following form H(x)i(xa - ax) for same aain mathcal B(mathcal H) and for all xin mathcal C_Eh. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries V:mathcal C_Eh to mathcal C_Eh. Let (mathcal C_E, cdot_mathcal C_E) be a separable or a perfect Banach symmetric ideal with not uniform norm, that is p_mathcal C_E 1 for any finite dimensional projection p inmathcal C_E with dim p(mathcal H)1, let mathcal C_E eq mathcal C_2, and let V: mathcal C_Eh to mathcal C_Eh be a surjective linear isometry. Then there exists unitary or anti-unitary operator u on mathcal H such that V(x)uxu orV(x)-uxu for all x in mathcal C_Eh.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here