z-logo
open-access-imgOpen Access
2-локальные изометрии некоммутативных пространств Лоренца
Author(s) -
A.A. Alimov,
V.I. Chilin
Publication year - 2019
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2019.21.44595
Subject(s) - surjective function , isometry (riemannian geometry) , lambda , physics , combinatorics , von neumann algebra , commutative property , mathematics , discrete mathematics , mathematical analysis , quantum mechanics , pure mathematics , von neumann architecture
Let mathcal M be a von Neumann algebra equipped with a faithful normal finite trace tau, and let Sleft( mathcalM, tauright) be an ast -algebra of all tau -measurable operators affiliated with mathcal M . For x in Sleft( mathcalM, tauright) the generalized singular value function mu(x):trightarrow mu(tx), t0, is defined by the equality mu(tx)infxp_mathcalM:, p2pp in mathcalM, , tau(mathbf1-p)leq t. Let psi be an increasing concave continuous function on 0, infty) with psi(0) 0, psi(infty)infty, and let Lambda_psi(mathcal M,tau) left x in Sleft( mathcalM, tauright): x _psi int_0inftymu(tx)dpsi(t) infty right be the non-commutative Lorentz space. A surjective (not necessarily linear) mapping V:, Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) is called a surjective 2-local isometry, if for any x, y in Lambda_psi(mathcal M,tau) there exists a surjective linear isometry V_x, y:, Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) such that V(x) V_x, y(x) and V(y) V_x, y(y). It is proved that in the case when mathcalM is a factor, every surjective 2-local isometry V:Lambda_psi(mathcal M,tau) to Lambda_psi(mathcal M,tau) is a linear isometry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here