
On Automorphisms of a Strongly Regular Graph with Parameters (117,36,15,9)
Author(s) -
A. K. Gutnova,
А. А. Махнев
Publication year - 2018
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2018.4.23386
Subject(s) - combinatorics , mathematics , automorphism , graph , physics
В предшествующих работах авторов найдены массивы пересечений дистанционно регулярных графов, в которых окрестности вершин являются псевдогеометрическими графамии для pGs−3(s,t). В частности, локально псевдо pG2(5,2)-граф является сильно регулярным графом с параметрами (117,36,15,9). Основным результатом данной статьи является теорема, в которой найдены возможные порядки и строение подграфов неподвижных точек автоморфизмов сильно регулярного графа с параметрами (117,36,15,9). Этот граф имеет спектр 361,926,−390. Порядок клики в Γ не превосходит 1+36/3=13, порядок коклики в Γ не превосходит 117⋅3/39=9. Далее из этого результата выведено следствие, что если группа G автоморфизмов сильно регулярного графа с параметрами (117,36,15,9) действует транзитивно на множестве вершин, то цоколь T группы G изоморфен либо L3(3) и Ta≅GL2(3) - подгруппа индекса 117, либо T≅L4(3) и Ta≅U4(2).Z2 - подгруппа индекса 117.