
An embedding theorem for an elementary net
Author(s) -
na Dzhusoeva,
С.Ю. Итарова,
V. A. Koibaev
Publication year - 2018
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2018.2.14721
Subject(s) - combinatorics , embedding , mathematics , computer science , artificial intelligence
Пусть Λ- произвольное коммутативное кольцо с единицей, n - натуральное число, n≥2. Система σ=(σij), 1≤i,j≤n, аддитивных подгрупп σij кольца Λ называется сетью (ковром) над кольцом Λ порядка n, если σirσrj⊆σij при всех значениях индексов i, r, j. Сеть, рассматриваемая без диагонали, называется элементарной сетью. Элементарная сеть σ=(σij), 1≤i≠j≤n, называется дополняемой (до полной сети), если для некоторых аддитивных подгрупп (точнее, подколец) σii кольца Λ таблица (с диагональю) σ=(σij),1≤i,j≤n является (полной) сетью. Другими словами, элементарная сеть σ является дополняемой, если ее можно дополнить (диагональю) до (полной) сети. Пусть σ=(σij) - элементарная сеть над кольцом Λ порядка n. Рассмотрим набор ω=(ωij)аддитивных подгрупп ωij кольца Λ, определенных для любых i≠j формулой ωij=∑nk=1σikσkj, где суммирование берется по всем k, отличным от i и j. Набор ω=(ωij) аддитивных подгрупп ωij кольца Λ является элементарной сетью, которую мы называем элементарной производной сетью. Элементарную сеть ω можно дополнить до (полной) сети стандартным способом, а также другим способом, который мы предлагаем в статье. Вводится также понятие сети Ω=(Ωij), которую мы называем сетью, ассоциированной с элементарной группой E(σ). Следующая теорема является основным результатом статьи: Элементарная сеть σ индуцирует элементарную производную сеть ω=(ωij) и сеть Ω=(Ωij), ассоциированную с элементарной группой E(σ), причем ω⊆σ⊆Ω. Если ω=(ωij) дополнить диагональю до полной стандартным способом, то для произвольного r и любых i≠j будет ωirΩrj⊆ωij и Ωirωrj⊆ωij. Если же ω=(ωij) дополнить диагональю до полной вторым способом, то последние включения выполняются для любых i, r, j.