Open Access
Linear Problem of Integral Geometry with Smooth Weight Functions and Perturbation
Author(s) -
Акрам Бегматов,
Г.М. Джайков
Publication year - 2015
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2017.3.7259
Subject(s) - geometry , perturbation (astronomy) , mathematics , mathematical analysis , physics , quantum mechanics
Изучаются две задачи интегральной геометрии в полосе на семействе отрезков прямых с заданной весовой функцией. Первая задача восстановление функции в полосе, если всюду в этой полосе известны интегралы от искомой функции с линейной весовой функцией на семействе отрезков прямых. Доказаны теорема единственности и теорема существования решения задачи, получено аналитическое представление решения в классе гладких финитных функций. Представлена оценка решения задачи в соболевских пространствах, откуда следует ее слабая некорректность. Теорема единственности и оценка устойчивости получены и для задачи с возмущением, весовая функция которой имеет достаточно общий вид. Вторая задача - восстановления функции по интегральным данным на семействе отрезков прямых с весовой функцией экспоненциального вида. Доказаны теорема единственности, теорема существования решения. Построено простое представление решения рассмотренной задачи интегральной геометрии в классе гладких финитных функций. Получена оценка устойчивости решения задачи в пространствах Соболева, тем самым показана слабая некорректность задачи. Далее рассматривается соответствующая задача интегральной геометрии с возмущением. Получены теорема единственности ее решения в классе гладких финитных функций с носителем в полосе и оценка устойчивости решения в соболевских пространствах.