z-logo
open-access-imgOpen Access
О максимальном квазинормированном расширении квазинормированных векторных решеток
Author(s) -
A. G. Kusraev,
Б.Б. Тасоев
Publication year - 2017
Publication title -
владикавказский математический журнал
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2017.3.7111
Subject(s) - mathematics , dedekind cut , banach space , pure mathematics , lattice (music) , dual norm , duality (order theory) , extension (predicate logic) , discrete mathematics , physics , computer science , acoustics , programming language
The purpose of this article is to extend the Abramovich's construction of a maximal normed extension of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension $X^\varkappa$ of a Dedekind complete quasi-normed lattice $X$ with the weak $\sigma$-Fatou property is a quasi-Banach lattice if and only if $X$ is intervally complete. Moreover, $X^\varkappa$ has the Fatou and the Levi property provided that $X$ is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying this construction to the definition of a space of weakly integrable functions with respect to a measure taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not work in the quasi-Banach setting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom