
О разложении в ряды экспонент функций, аналитических на выпуклых локально замкнутых множествах
Author(s) -
S.N. Melikhov,
S. Momm
Publication year - 2011
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2011.1.11350
Subject(s) - mathematics , inverse , bounded function , representation (politics) , bounded operator , linear map , operator (biology) , exponential function , pure mathematics , algebra over a field , combinatorics , discrete mathematics , mathematical analysis , geometry , biochemistry , chemistry , repressor , politics , political science , transcription factor , law , gene
Let Qbe a bounded, convex, locally closed subset of CN with nonempty interior. For N>1 sufficient conditions are obtained that an operator of the representation of analytic functions on Q by exponential series has a continuous linear right inverse. For N=1 the criterions for the existence of a continuous linear right inverse for the representation operator are proved.