z-logo
open-access-imgOpen Access
О разложении в ряды экспонент функций, аналитических на выпуклых локально замкнутых множествах
Author(s) -
S.N. Melikhov,
S. Momm
Publication year - 2011
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.23671/vnc.2011.1.11350
Subject(s) - mathematics , inverse , bounded function , representation (politics) , bounded operator , linear map , operator (biology) , exponential function , pure mathematics , algebra over a field , combinatorics , discrete mathematics , mathematical analysis , geometry , biochemistry , chemistry , repressor , politics , political science , transcription factor , law , gene
Let Qbe a bounded, convex, locally closed subset of CN with nonempty interior. For N>1 sufficient conditions are obtained that an operator of the representation of analytic functions on Q by exponential series has a continuous linear right inverse. For N=1 the criterions for the existence of a continuous linear right inverse for the representation operator are proved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here