z-logo
open-access-imgOpen Access
Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network
Author(s) -
Martin Gillstedt,
Ludwig Mannius,
John Paoli,
Johan Dahlén Gyllencreutz,
Julia Fougelberg,
E. Bäckman,
Jenna Pakka,
Oscar Zaar,
Sam Polesie
Publication year - 2022
Publication title -
acta dermato-venereologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.982
H-Index - 83
eISSN - 1651-2057
pISSN - 0001-5555
DOI - 10.2340/actadv.v102.2681
Subject(s) - confidence interval , medicine , convolutional neural network , receiver operating characteristic , dermatology , venereology , melanoma , nuclear medicine , artificial intelligence , computer science , cancer research

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here