z-logo
open-access-imgOpen Access
Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network
Author(s) -
Martin Gillstedt,
Ludwig Mannius,
John Paoli,
Johan Dahlén Gyllencreutz,
Julia Fougelberg,
E. Bäckman,
Jenna Pakka,
Oscar Zaar,
Sam Polesie
Publication year - 2022
Publication title -
acta dermato venereologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.982
H-Index - 83
eISSN - 1651-2057
pISSN - 0001-5555
DOI - 10.2340/actadv.v102.2681
Subject(s) - confidence interval , medicine , convolutional neural network , receiver operating characteristic , dermatology , venereology , melanoma , nuclear medicine , artificial intelligence , computer science , cancer research

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom