Insulin Response to Oral Glucose and Cardiometabolic Disease: A Mendelian Randomization Study to Assess Potential Causality
Author(s) -
Anthony Nguyen,
Rana Khafagy,
Ameena Meerasa,
Delnaz Roshandel,
Andrew H. Paterson,
Satya Dash
Publication year - 2022
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db22-0138
Subject(s) - mendelian randomization , medicine , endocrinology , type 2 diabetes , hyperinsulinemia , insulin , coronary artery disease , body mass index , postprandial , triglyceride , diabetes mellitus , odds ratio , cholesterol , insulin resistance , biology , genetic variants , biochemistry , gene , genotype
Mendelian randomization (MR) suggests that postprandial hyperinsulinemia (unadjusted for plasma glucose) increases BMI, but its impact on cardiometabolic disease, a leading cause for mortality and morbidity in people with obesity, is not established. Fat distribution i.e., increased centripetal and/or reduced femoro-gluteal adiposity, is causally associated with and better predicts cardiometabolic disease than BMI. We therefore undertook bidirectional MR to assess the effect of corrected insulin response (CIR) (insulin 30 min after a glucose challenge adjusted for plasma glucose) on BMI, waist-to-hip ratio (WHR), leg fat, type 2 diabetes (T2D), triglyceride (TG), HDL, liver fat, hypertension (HTN), and coronary artery disease (CAD) in people of European descent. Inverse variance-weighted MR suggests a potential causal association between increased CIR and increased BMI (b = 0.048 ± 0.02, P = 0.03), increased leg fat (b = 0.029 ± 0.012, P = 0.01), reduced T2D (b = -0.73 ± 0.15, P = 6 × 10-7, odds ratio [OR] 0.48 [95% CI 0.36-0.64]), reduced TG (b = -0.07 ± 0.02, P = 0.003), and increased HDL (b = 0.04 ± 0.01, P = 0.006) with some evidence of horizontal pleiotropy. CIR had neutral effects on WHR (b = 0.009 ± 0.02, P = 0.69), liver fat (b = -0.08 ± 0.04, P = 0.06), HTN (b = -0.001 ± 0.004, P = 0.7, OR 1.00 [95% CI 0.99-1.01]), and CAD (b = -0.002 ± 0.002, P = 0.48, OR 0.99 [95% CI 0.81-1.21]). T2D decreased CIR (b -0.22 ± 0.04, P = 1.3 × 10-7), with no evidence that BMI, TG, HDL, liver fat, HTN, and CAD modulate CIR. In conclusion, we did not find evidence that increased CIR increases cardiometabolic disease. It might increase BMI with favorable fat distribution, reduce T2D, and improve lipids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom