Circadian GLP-1 Secretion in Mice Is Dependent on the Intestinal Microbiome for Maintenance of Diurnal Metabolic Homeostasis
Author(s) -
Sarah E. Martchenko,
Alexandre Martchenko,
Brian Cox,
Kendra Naismith,
Alison S. Waller,
Patrick Gurges,
Maegan E. Sweeney,
Dana J. Philpott,
Patricia L. Brubaker
Publication year - 2020
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db20-0262
Subject(s) - circadian rhythm , endocrinology , glucose homeostasis , medicine , biology , microbiome , incretin , glucagon like peptide 1 , enteroendocrine cell , secretion , homeostasis , insulin , insulin resistance , endocrine system , type 2 diabetes , diabetes mellitus , hormone , bioinformatics
The incretin glucagon-like peptide 1 (GLP-1) is secreted by the intestinal L cell upon nutrient ingestion. GLP-1 also exhibits a circadian rhythm, with highest release at the onset of the feeding period. Similarly, microbial composition and function exhibit circadian rhythmicity with fasting-feeding. The circadian pattern of GLP-1 release was found to be dependent on the oral route of glucose administration and was necessary for the rhythmic release of insulin and diurnal glycemic control in normal male and female mice. In mice fed a Western (high-fat/high-sucrose) diet for 16 weeks, GLP-1 secretion was markedly increased but arrhythmic over the 24-h day, whereas levels of the other incretin, glucose-dependent insulinotropic polypeptide, were not as profoundly affected. Furthermore, the changes in GLP-1 secretion were shown to be essential for the maintenance of normoglycemia in this obesogenic environment. Analysis of the primary L-cell transcriptome, as well as of the intestinal microbiome, also demonstrated time-of-day– and diet-dependent changes paralleling GLP-1 secretion. Finally, studies in antibiotic-induced microbial depleted and in germ-free mice with and without fecal microbial transfer, provided evidence for a role of the microbiome in diurnal GLP-1 release. In combination, these findings establish a key role for microbiome-dependent circadian GLP-1 secretion in the maintenance of 24-h metabolic homeostasis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom