z-logo
open-access-imgOpen Access
A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells
Author(s) -
Maria Bettini,
Marissa A. Scavuzzo,
Baoyu Liu,
Elizabeth Motunrayo Kolawole,
Lin Guo,
Brian D. Evavold,
Malgorzata Borowiak,
Matthew L. Bettini
Publication year - 2019
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db19-0821
Subject(s) - residue (chemistry) , insulin , t cell receptor , endocrinology , medicine , chemistry , biology , immunology , biochemistry , t cell , immune system
Type 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB9-23) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs). Here we demonstrate that mutation of insulin epitope results in escape of highly pathogenic T cells. We observe an increase in antigen reactivity, clonality, and pathogenicity of insulin-specific T cells that develop in the absence of cognate antigen. Using a single TCR system, we demonstrate that Treg development is greatly diminished in mice with the Y16A mutant epitope. Collectively, these results suggest that the tyrosine residue at position 16 is necessary to constrain TCR reactivity for InsB9-23 by both limiting the development of pathogenic T cells and supporting the selection of Tregs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom