z-logo
open-access-imgOpen Access
Diabetes-Induced NF-κB Dysregulation in Skeletal Stem Cells Prevents Resolution of Inflammation
Author(s) -
Kang I. Ko,
Abby L. Syverson,
Richard M. Kralik,
Jerry Choi,
Brett P. DerGarabedian,
Chider Chen,
Dana T. Graves
Publication year - 2019
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db19-0496
Subject(s) - inflammation , mesenchymal stem cell , stem cell , nf κb , microbiology and biotechnology , macrophage polarization , diabetes mellitus , cancer research , immunology , medicine , biology , macrophage , endocrinology , in vitro , biochemistry
Type 1 diabetes (T1D) imposes a significant health burden by negatively affecting tissue regeneration during wound healing. The adverse effect of diabetes is attributed to high levels of inflammation, but the cellular mechanisms responsible remain elusive. In this study, we show that intrinsic skeletal stem cells (SSCs), a subset of mesenchymal stem cells, are essential for resolution of inflammation to occur during osseous healing by using genetic approaches to selectively ablate SSCs. T1D caused aberrant nuclear factor-κB (NF-κB) activation in SSCs and substantially enhanced inflammation in vivo. Constitutive or tamoxifen-induced inhibition of NF-κB in SSCs rescued the impact of diabetes on inflammation, SSC expansion, and tissue formation. In contrast, NF-κB inhibition in chondrocytes failed to reverse the effect of T1D. Mechanistically, diabetes caused defective proresolving macrophage (M2) polarization by reducing TGF-β1 expression by SSCs, which was recovered by NF-κB inhibition or exogenous TGF-β1 treatment. These data identify an underlying mechanism for altered healing in T1D and demonstrate that diabetes induces NF-κB hyperactivation in SSCs to disrupt their ability to modulate M2 polarization and resolve inflammation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom