z-logo
open-access-imgOpen Access
White Matter Microstructural Change Contributes to Worse Cognitive Function in Patients With Type 2 Diabetes
Author(s) -
Shudan Gao,
Yaojing Chen,
Feng Sang,
Yiru Yang,
Jianan Xia,
Xin Li,
Junying Zhang,
Kewei Chen,
Zhanjun Zhang
Publication year - 2019
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db19-0233
Subject(s) - fasciculus , white matter , cognition , dementia , audiology , diffusion mri , fractional anisotropy , psychology , uncinate fasciculus , type 2 diabetes mellitus , neuroscience , medicine , cardiology , magnetic resonance imaging , diabetes mellitus , radiology , endocrinology , disease
Patients with type 2 diabetes mellitus (T2DM) have a considerably high risk of developing dementia, especially for those with mild cognitive impairment (MCI). The investigation of the microstructural change of white matter (WM) between T2DM with amnesic MCI (T2DM-aMCI) and T2DM with normal cognition (T2DM-NC) and their relationships to cognitive performances can help to understand the brain variations in T2DM-related amnesic cognitive impairment. In the current study, 36 T2DM-aMCI patients, 40 T2DM-NC patients, and 40 healthy control (HC) individuals underwent diffusion tensor image and T1-weighted MRI scans and comprehensive cognition assessments. All of these cognitive functions exhibited intergroup ranking differences in patients. The T2DM-NC patients and HC individuals did not reveal any significant differences in WM integrity. The T2DM-aMCI patients showed disrupted integrity in multiple WM tracts compared with HC and T2DM-NC. Specifically, the damaged WM integrity of the right inferior fronto-occipital fasciculus and the right inferior longitudinal fasciculus exhibited significant correlations with episodic memory and attention function impairment in T2DM patients. Furthermore, cognitive impairment-related WM microstructural damage was associated with the degeneration of cortex connected to the affected WM tract. These findings indicate that degeneration exists extensively in WM tracts in T2DM-aMCI, whereas no brain WM damage is evident in T2DM-NC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom