z-logo
open-access-imgOpen Access
Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment
Author(s) -
Jian Gong,
Richard Archer,
Michael D. Brown,
Seth Fisher,
Connie Y. Chang,
Matthew Peacock,
Christopher C.W. Hughes,
Bruce Freimark
Publication year - 2013
Publication title -
molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.815
H-Index - 60
eISSN - 1536-0121
pISSN - 1535-3508
DOI - 10.2310/7290.2012.00039
Subject(s) - phosphatidylserine , cd31 , docetaxel , cancer research , medicine , antibody , pathology , cancer , chemistry , immunology , angiogenesis , phospholipid , membrane , biochemistry
Imaging tumors and their response to treatment could be a valuable biomarker toward early assessment of therapy in patients with cancer. Phosphatidylserine (PS) is confined to the inner leaflet of the plasma membrane in normal cells but is externalized on tumor vascular endothelial cells (ECs) and tumor cells, and PS exposure is further enhanced in response to radiation and chemotherapy. In the present study, we evaluated the potential of a PS-targeting human F(ab')2 antibody fragment, PGN650, to detect exposure of PS in tumor-bearing mice. Tumor uptake of PGN650 was measured by near-infrared optical imaging in human tumor xenografts in immunodeficient mice. PGN650 specifically targeted tumors and was shown to target CD31-positive ECs and tumor cells. Tumor uptake of PGN650 was significantly higher in animals pretreated with docetaxel. The peak tumor to normal tissue (T/N) ratio of probe was observed at 24 hours postinjection of probe, and tumor binding was detected for at least 120 hours. In repeat dose studies, PGN650 uptake in tumors was significantly higher following pretreatment with docetaxel compared to baseline uptake prior to treatment. PGN650 may be a useful probe to detect PS exposed in tumors and to monitor enhanced PS exposure to optimize therapeutic agents to treat tumors

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom