z-logo
open-access-imgOpen Access
Inorganic Nanoparticles for Multimodal Molecular Imaging
Author(s) -
Magdalena Swierczewska,
Seulki Lee,
Xiaohong Chen
Publication year - 2011
Publication title -
molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.815
H-Index - 60
eISSN - 1536-0121
pISSN - 1535-3508
DOI - 10.2310/7290.2011.00001
Subject(s) - molecular imaging , nanotechnology , nanoparticle , materials science , modality (human–computer interaction) , biomolecule , multimodal therapy , nanomedicine , cancer imaging , iron oxide nanoparticles , computer science , in vivo , human–computer interaction , cancer , medicine , microbiology and biotechnology , surgery , biology
Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom