z-logo
open-access-imgOpen Access
Multimodal Imaging of Neural Progenitor Cell Fate in Rodents
Author(s) -
Yannic Waerzeggers,
Markus Klein,
Hrvoje Miletić,
Uwe Himmelreich,
Hongfeng Li,
Parisa Monfared,
Ulrich Herrlinger,
Mathias Hoehn,
Heinrich Hubert Coenen,
Michael Weller,
Alexandra Winkeler,
Andreas H. Jacobs
Publication year - 2008
Publication title -
molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.815
H-Index - 60
eISSN - 1536-0121
pISSN - 1535-3508
DOI - 10.2310/7290.2008.0010
Subject(s) - neural stem cell , progenitor cell , neuroscience , progenitor , biology , microbiology and biotechnology , stem cell
For clinical application of stem cell–based therapies, noninvasive detection of applied stem cells is of high importance. We report on the feasibility of detecting implanted neural progenitor cells (NPCs) noninvasively and follow their fate and functional status by sequential multimodal molecular imaging and reporter gene technology. We investigated C17.2 cells stably expressing herpes simplex virus type 1–thymidine kinase (HSV-1-tk) and green fluorescent protein (gfp) (C17.2-tkIRESgfp = C17.2-TIG) or HSV-1-tk, gfp, and firefly luciferase (luc) (C17.2-lucIREStkgfp = C17.2-LITG) and determined the detection sensitivity of positron emission tomography (PET) and bioluminescence imaging (BLI) for these cells in culture and in vivo in subcutaneous and intracranial glioma models. In addition, PET and BLI were used to further investigate and follow the fate of implanted C17.2-LITG cells in an intracranial glioma model. We show that both imaging modalities are sensitive in detecting reporter gene expressing NPCs; however, PET, by the use of 9-[4-[18F]fluoro-3-hydroxymethyl)butyl]guanine ([18F]FHBG), detects NPCs only at sites of disrupted blood-brain barrier. Furthermore, both imaging modalities can be used to detect stem cell fate and migration and indicate excessive proliferation and aberrant migration. In conclusion, multimodal imaging can be used for longitudinal noninvasive monitoring of grafted NPCs in rodents

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom