z-logo
Premium
Monte carlo approximation to edgeworth expansions
Author(s) -
Hall Peter,
Martin Michael A.,
Sun Shan
Publication year - 1999
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3316113
Subject(s) - edgeworth series , monte carlo method , statistical inference , inference , mathematics , nonparametric statistics , computer science , econometrics , statistics , artificial intelligence
Since the 1930s, empirical Edgeworth expansions have been employed to develop techniques for approximate, nonparametric statistical inference. The introduction of bootstrap methods has increased the potential usefulness of Edgeworth approximations. In particular, a recent paper by Lee & Young introduced a novel approach to approximating bootstrap distribution functions, using first an empirical Edgeworth expansion and then a more traditional bootstrap approximation to the remainder. In principle, either direct calculation or computer algebra could be used to compute the Edgeworth component, but both methods would often be difficult to implement in practice, not least because of the sheer algebraic complexity of a general Edgeworth expansion. In the present paper we show that a simple but nonstandard Monte Carlo technique is a competitive alternative. It exploits properties of Edgeworth expansions, in particular their parity and the degrees of their polynomial terms, to develop particularly accurate approximations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here