Premium
Flexible regression modeling
Author(s) -
Hooper Peter M.
Publication year - 2001
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3316032
Subject(s) - estimator , basis function , affine transformation , covariate , computer science , algorithm , computation , logistic regression , basis (linear algebra) , regression analysis , mathematics , statistics , mathematical analysis , geometry , pure mathematics
The author proposes a new method for flexible regression modeling of multi‐dimensional data, where the regression function is approximated by a linear combination of logistic basis functions. The method is adaptive, selecting simple or more complex models as appropriate. The number, location, and (to some extent) shape of the basis functions are automatically determined from the data. The method is also affine invariant, so accuracy of the fit is not affected by rotation or scaling of the covariates. Squared error and absolute error criteria are both available for estimation. The latter provides a robust estimator of the conditional median function. Computation is relatively fast, particularly for large data sets, so the method is well suited for data mining applications.