Premium
Exactly optimal sampling designs for processes with a product covariance structure
Author(s) -
Mukherjee Bhramar
Publication year - 2003
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315904
Subject(s) - covariance , sampling (signal processing) , product (mathematics) , computer science , mathematics , statistics , geometry , filter (signal processing) , computer vision
The author considers the problem of finding exactly optimal sampling designs for estimating a second‐order, centered random process on the basis of finitely many observations. The value of the process at an unsampled point is estimated by the best linear unbiased estimator. A weighted integrated mean squared error or the maximum mean squared error is used to measure the performance of the estimator. The author presents a set of necessary and sufficient conditions for a design to be exactly optimal for processes with a product covariance structure. Expansions of these conditions lead to conditions for asymptotic optimality.