Premium
A fast distance‐based approach for determining the number of components in mixtures
Author(s) -
Sahu Sujit K.,
Cheng Russell C. H.
Publication year - 2003
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315900
Subject(s) - computer science , bayes' theorem , bayesian probability , algorithm , software , mathematics , artificial intelligence , programming language
The authors propose a procedure for determining the unknown number of components in mixtures by generalizing a Bayesian testing method proposed by Mengersen & Robert (1996). The testing criterion they propose involves a Kullback‐Leibler distance, which may be weighted or not. They give explicit formulas for the weighted distance for a number of mixture distributions and propose a stepwise testing procedure to select the minimum number of components adequate for the data. Their procedure, which is implemented using the BUGS software, exploits a fast collapsing approach which accelerates the search for the minimum number of components by avoiding full refitting at each step. The performance of their method is compared, using both distances, to the Bayes factor approach.