Premium
Maximum‐likelihood estimation for constrained‐ or missing‐data models
Author(s) -
Gelfand Alan E.,
Carlin Bradley P.
Publication year - 1993
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315756
Subject(s) - missing data , expectation–maximization algorithm , monte carlo method , multivariate statistics , mathematics , maximum likelihood , maximization , maximum likelihood sequence estimation , computer science , estimation theory , mathematical optimization , algorithm , statistics
In statistical models involving constrained or missing data, likelihoods containing integrals emerge. In the case of both constrained and missing data, the result is a ratio of integrals, which for multivariate data may defy exact or approximate analytic expression. Seeking maximum‐likelihood estimates in such settings, we propose Monte Carlo approximants for these integrals, and subsequently maximize the resulting approximate likelihood. Iteration of this strategy expedites the maximization, while the Gibbs sampler is useful for the required Monte Carlo generation. As a result, we handle a class of models broader than the customary EM setting without using an EM‐type algorithm. Implementation of the methodology is illustrated in two numerical examples.