Premium
On moments of the supremum of normed weighted averages
Author(s) -
Li Deli
Publication year - 1996
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315739
Subject(s) - combinatorics , infimum and supremum , mathematics , sequence (biology) , random variable , statistics , chemistry , biochemistry
Let { X, X n ; n ≥ 1} be a sequence of real‐valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = ( a nk ; 1 ≤ k ≤ n , n ≥ 1); a nk , ϵ R and sup n, k | a n,k | < ∞}. Set S n ( A ) = ∑ n k=1 a n, k X k for A ϵ D and n ≥ 1. This paper is devoted to determining conditions whereby E {sup n ≥ 1 , | S n ( A )|/ n 1/r } p < ∞ or E {sup n ≥ 2 | S n ( A )|/2 n log n ) 1/2 } p < ∞ for every A ϵ D . This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom