Premium
Distribution of the correlation coefficient for the class of bivariate elliptical models
Author(s) -
Ali Mir M.,
Joarder Anwarul H.
Publication year - 1991
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315434
Subject(s) - bivariate analysis , mathematics , fisher transformation , correlation coefficient , correlation , class (philosophy) , correlation ratio , distribution (mathematics) , statistics , statistical physics , mathematical analysis , physics , geometry , computer science , artificial intelligence
We consider n pairs of random variables (X 11 ,X 21 ) ,(X 12 ,X 22 ),… (X 1n ,X 2n ) having a bivariate elliptically contoured density of the form\documentclass{article}\pagestyle{empty}\begin{document}$$ K(n)|\Lambda |^{ - n/2} g\left\{ {\sum\limits_1^n {({\bf x}_{1j} - \theta _1 ,\,{\bf x}_{2j} - \theta _2 )\Lambda ^{ - 1} ({\bf x}_{1j} - \theta _1 ,\,{\bf x}_{2j} - \theta _2 )^{\rm T} } } \right\}, $$\end{document}where θ 1 θ 2 are location parameters and Δ = ((λ ik )) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product‐moment correlation coefficient between X 1 and X 2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom