z-logo
Premium
Inference for nonconjugate Bayesian Models using the Gibbs sampler
Author(s) -
Carlin Bradley P.,
Polson Nicholas G.
Publication year - 1991
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315430
Subject(s) - gibbs sampling , monte carlo method , mathematics , bayesian probability , a priori and a posteriori , bayesian inference , statistics , humanities , philosophy , epistemology
A Bayesian approach to modeling a rich class of nonconjugate problems is presented. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The result is a general strategy for obtaining marginal posterior densities under changing specification of the model error densities and related prior densities. We illustrate the approach in a nonlinear regression setting, comparing the merits of three candidate error distributions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom