z-logo
Premium
Alternative Bayes factors for model selection
Author(s) -
De Santis Fulvio,
Spezzaferri Fulvio
Publication year - 1997
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315344
Subject(s) - bayes' theorem , bayes factor , selection (genetic algorithm) , computer science , model selection , statistics , econometrics , mathematics , artificial intelligence , bayesian probability
Several alternative Bayes factors have been recently proposed in order to solve the problem of the extreme sensitivity of the Bayes factor to the priors of models under comparison. Specifically, the impossibility of using the Bayes factor with standard noninformative priors for model comparison has led to the introduction of new automatic criteria, such as the posterior Bayes factor (Aitkin 1991), the intrinsic Bayes factors (Berger and Pericchi 1996b) and the fractional Bayes factor (O'Hagan 1995). We derive some interesting properties of the fractional Bayes factor that provide justifications for its use additional to the ones given by O'Hagan. We further argue that the use of the fractional Bayes factor, originally introduced to cope with improper priors, is also useful in a robust analysis. Finally, using usual classes of priors, we compare several alternative Bayes factors for the problem of testing the point null hypothesis in the univariate normal model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here