Premium
Estimation bayesienne des effets dans le modele a effets aleatoires de classification double avec interaction
Author(s) -
Clement Bernard
Publication year - 1975
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3315280
Subject(s) - sigma , physics , distribution (mathematics) , mathematics , statistics , combinatorics , bayesian probability , mathematical analysis , quantum mechanics
The problem of estimating the effects in a balanced two‐way classification with interaction\documentclass{article}\pagestyle{empty}\begin{document}$$y_{ijk} = \mu + r_i + c_j + t_{ij} + e_{ijk}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of r i , c j and t ij are obtained under the assumptions that r i , c j , t ij and e ijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} . Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom