Premium
On a Berry‐Esséen theorem for a Studentized jackknife L‐estimate
Author(s) -
Cheng KuangFu
Publication year - 1982
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3314903
Subject(s) - jackknife resampling , studentized range , mathematics , combinatorics , function (biology) , delta method , statistics , standard error , biology , evolutionary biology , estimator
Consider a linear function of order statistics (“L‐estimate”) which can be expressed as a statistical function T(F n ) based on the sample cumulative distribution function F n . Let T*(F n ) be the corresponding jackknifed version of T(F n ), and let V 2 n be the jackknife estimate of the asymptotic variance of n 1/2 T(F n ) or n 1/2 T*(F n ). In this paper, we provide a Berry‐Esséen rate of the normal approximation for a Studentized jackknife L‐estimate n 1/2 [T*(F n ) ‐ T(F)]/V n , where T(F) is the basic functional associated with the L‐estimate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom