z-logo
Premium
Uniform asymptotic linearity in a regression parameter of a process based on a rank statistic
Author(s) -
Boulanger Alain
Publication year - 1983
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.2307/3314884
Subject(s) - mathematics , rank (graph theory) , combinatorics , statistic , linearity , distribution (mathematics) , statistics , linear regression , constant (computer programming) , function (biology) , mathematical analysis , physics , quantum mechanics , evolutionary biology , computer science , biology , programming language
For X 1 , …, X N a random sample from a distribution F, let the process S δ N ( t ) be defined as\documentclass{article}\pagestyle{empty}\begin{document}$$ S_N^\Delta (t) = K_N^{ - 1} \sum\limits_{i = 1}^N {(c_i - \bar c})a_N (R_{x_i + \Delta d_i ,} t)\;\;0 \le t1,\;\Delta \in {\bf R}, $$\end{document}where K 2 N = σ N i=1 (c i − c̄) 2\documentclass{article}\pagestyle{empty}\begin{document}$$ a_N (i,t) = (i - Nt)I(Nt \le i < Nt + 1) + I(i \ge Nt + 1),\;i = \cdots ,N, $$\end{document}and R x i , + Δ d , is the rank of X i + Δd i , among X 1 + Δd 1 , …, X N + Δd N . The purpose of this note is to prove that, under certain regularity conditions on F and on the constants c i and d i , S Δ N (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C . The special case of two samples is considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom