z-logo
Premium
Do spatial effects play a role in the spatial distribution of desert‐dwelling Acacia raddiana ?
Author(s) -
Wiegand Kerstin,
Jeltsch Florian,
Ward David
Publication year - 2000
Publication title -
journal of vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 115
eISSN - 1654-1103
pISSN - 1100-9233
DOI - 10.2307/3246577
Subject(s) - spatial distribution , spatial ecology , ecology , common spatial pattern , acacia , seedling , competition (biology) , spatial heterogeneity , biology , mathematics , statistics , botany
Abstract. We investigated the spatial pattern of A. raddiana in the Negev desert of Israel in order to gain insights into the factors and processes driving the dynamics of this species. Using a scale‐dependent measure, the ring statistic, we analysed both patterns observed in the field and time series of spatial tree distributions produced by a simulation model. In the field, random spacing was the predominant pattern observed. However seedlings were clumped on small scales. We ran the model under two contrasting scenarios representing hypotheses that explain the clumping of seedlings and the random distribution of trees. One hypothesis is that there is spatial heterogeneity in seed distribution, germination and seedling mortality, but that these heterogeneities are not correlated with each other in space. The second hypothesis assumes a correlation between these heterogeneities leading to areas suitable for establishment. However, the suitability of the sites is temporally variable. Furthermore, the second hypothesis assumes density‐dependent tree mortality due to competition. Both hypotheses lead to spatial distributions that are in qualitative agreement with the patterns observed in the field. Therefore, the classical view that a clumped seedling distribution and a random pattern of older trees is due to clumped regeneration and density‐dependent mortality may not hold for Acacia trees in the Negev.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here