z-logo
Premium
Disturbance regimes and vegetation dynamics: role of floods in riverine wetlands
Author(s) -
Bornette Gudrun,
Amoros Claude
Publication year - 1996
Publication title -
journal of vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 115
eISSN - 1654-1103
pISSN - 1100-9233
DOI - 10.2307/3236373
Subject(s) - species richness , ecological succession , ecology , disturbance (geology) , intermediate disturbance hypothesis , vegetation (pathology) , species diversity , wetland , environmental science , geography , biology , paleontology , medicine , pathology
. This study tested whether the frequency of flood disturbances was able to slow down or stabilize vegetation succession in former braided channels over a decade. According to the Patch Dynamics Concept and to succession theory, species richness and diversity should be high but stable in the frequently (40 days/year) flooded channel, and should change over time in the infrequently (1 day/year) flooded one. Within the frequently disturbed channel, composition of vegetation as well as species richness and diversity appeared stable through dynamic equilibrium over the decade. Only one zone, because of particular geomorphological features that decreased disturbance intensity, developed highest diversity and richness as expected from the Intermediate Disturbance Hypothesis. The highest disturbance effect decreased species richness and was related to a higher spatial heterogeneity of the substrate (number of grain‐size classes). In the other zones, richness and diversity appeared to be lowest where disturbance frequency was lowest or disturbance intensity was highest. From 1981 to 1987, the infrequently flooded channel underwent succession, and species richness increased in the major part of the channel, whereas diversity increased only in its extreme parts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here