Premium
Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long‐distance dispersal from western North America
Author(s) -
Vijverberg Kitty,
Mes Ted H. M.,
Bachmann Konrad
Publication year - 1999
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.2307/2656926
Subject(s) - biology , monophyly , indel , biological dispersal , clade , evolutionary biology , phylogenetic tree , chloroplast dna , introgression , internal transcribed spacer , molecular phylogenetics , genetics , population , gene , demography , sociology , genotype , single nucleotide polymorphism
Restriction site mutations and trnL (UAA)‐ trnF (GAA) intergenic spacer length variants in the chloroplast genome were used to investigate the phylogenetic relationships among 53 Australian and New Zealand Microseris populations and to assess their position within their primarily North American genus. The study was performed to enhance understanding of evolutionary processes within this unique example of intercontinental dispersal and subsequent adaptive radiation. A southern blot method using four‐base restriction enzymes and fragment separation on polyacryamide gels resulted in 55 mutations of which 30 were potentially phylogenetically informative. Most mutations were small indels of <162 bp, 80% of which were <20 bp. The small indels were useful for phylogenetic reconstruction of Australasian Microseris as judged by the high consistency indexes. The results confirmed the monophyly of the Australian and New Zealand Microseris. The occurrence of “hard” basal polytomies in the most parsimonious trees indicated that rapid radiation has occurred early in the history of the taxon. The monophyly of M. lanceolata, which includes the self‐incompatible ecotypes of the Australian mainland, was confirmed. Within this species three clades were found that reflect more geographic distribution than morphological entities, suggesting that migration and possibly introgression between different ecotypes, or parallel evolution of similar adaptations, has occurred. One of the three clades was supported by a 162‐bp deletion in the trnL ‐ trnF spacer, while a subgroup of this exhibited also a tandemly repeated trnF exon. The data were inconclusive about the monophyly of the second Australasian species, M. scapigera, which comprises the New Zealand, Tasmanian, and autofertile ecotypes of Australia.