z-logo
Premium
Restricted Estimation of Generalized Linear Models
Author(s) -
Nyquist Hans
Publication year - 1991
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.2307/2347912
Subject(s) - estimation , mathematics , statistics , econometrics , economics , management
SUMMARY Maximum likelihood estimation of the generalized linear model under linear restrictions on the parameters is considered. Using a penalty function approach an iterative procedure for obtaining the estimates is proposed. The likelihood ratio test, the Wald test and the Lagrange multiplier test are considered as alternatives for testing a hypothesis about linear restrictions on the parameters. An application of the estimator and the tests is illustrated in a numerical example. The approach extends to a definition of a ridge estimator for generalized linear models and to a definition of piecewise regressions, including cubic spline functions and a nonparametric smoother.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom