z-logo
Premium
Interbiome Comparison of Stream Ecosystem Dynamics
Author(s) -
Minshall G. Wayne,
Petersen Robert C.,
Cummins Kenneth W.,
Bott Thomas L.,
Sedell James R.,
Cushing Colbert E.,
Vannote Robin L.
Publication year - 1983
Publication title -
ecological monographs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.254
H-Index - 156
eISSN - 1557-7015
pISSN - 0012-9615
DOI - 10.2307/1942585
Subject(s) - ecosystem , environmental science , riparian zone , organic matter , streams , ecology , watershed , hydrology (agriculture) , river ecosystem , tributary , benthic zone , geology , geography , habitat , biology , computer network , geotechnical engineering , cartography , machine learning , computer science
Studies were conducted in four distinct geographic areas (biomes/sites) in northern United States to examine changes in key ecosystem parameter: benthic organic matter (BOM), transported organic matter (TOM), community production and respiration, leaf pack decomposition, and functional feeding—group composition along gradients of increasing stream size. Four stations ranging from headwaters (1st or 2nd order) to midsized rivers (5th to 7th order) were examined at each site using comparable methods. The results for each parameter are presented and discussed in light of the River Continuum Concept of Vannote et al. (1980). The postulated gradual change in a stream ecosystem's structure and function is supported by this study. However, regional and local deviations occur as a result of variations in the influence of: (1) watershed climate and geology, (2) riparian conditions, (3) tributaries, and (4) location—specific lithology and geomorphology. In particular, the continuum framework must be visualized as a sliding scale which is shifted upstream or downstream depending on macroenvironmental forces (1 and 2) or reset following the application of more localized "micro"—environmental influences (3 and 4). Analysis of interactions between BOM and TOM permitted evaluation of stream retentiveness for organic matter. Headwaters generally were most retentive and downstream reaches the least. Estimates of organic matter turnover times ranged between 0.2 and 14 yr, and commonly were 1—4 yr. Both turnover times and distances were determined primarily by the interaction between current velocity and stream retention. Biological processes played a secondary role. However, the streams varied considerably in their spiraling of organic matter due to differences in the interplay between retentiveness and biological activity. Differences in the relative importance of retention mechanisms along the continuum suggest that headwater stream ecosystems may be functionally more stable, at least to physical disturbances, than are the r intermediate river counterparts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here