Premium
Transient Ecotone Response to Climatic Change: Some Conceptual and Modelling Approaches
Author(s) -
Neilson Ronald P.
Publication year - 1993
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.2307/1941907
Subject(s) - ecotone , biome , ecology , biosphere , climate change , abiotic component , environmental science , ecosystem , biodiversity , geography , biology , habitat
Accurate prediction of the ecological impacts of climatic change is a pressing challenge to the science of ecology. The current state of the art for broad—scale estimates of change in biomes and ecotones between biomes is limited to equilibrium estimates of ecological change under some future equilibrium climate. Uncertainties in these estimates abound, ranging from uncertainties in future climate scenarios to uncertainties in our ecological models and finally to uncertainties in modelling the feedbacks between the climate and the biosphere. Ecologists and policymakers need to go beyond equilibrium estimates of biosphere change to transient responses of the biosphere as the climate changes. Ecotones between biomes have been suggested as sensitive areas of change that could be effectively modelled and monitored for future change. Ecotones are also important in influencing local and regional biodiversity patterns and ecological flows. The ecological processes that could affect change at ecotones and within biomes are discussed; they include internal ecosystem processes, such as competition, and external abiotic processes, most notably drought and related disturbances. Drought followed by infestations and fire appears to be the most likely process that could mediate ecological change under a rapidly changing climate. The impacts would be apparent all across biomes, not just at ecotones. However, specific predictions about the dynamics of ecotones can be made qualitatively, based on a theory of patch scaling and diversity in relation to abiotic stressors. Under current conditions, the size of homogeneous patches is expected to be small at ecotones, but to enlarge with distance from the ecotone. Directional climatic change should promote a coalescence of patches on one side of the ecotone and increased fragmentation on the other side. Ecotones should begin to blur as viewed from a satellite only to re—form at some later date in a new location. This view is in contrast to the notion that ecotones would retain sharp distinction and simply move across the landscape. These changes are presented as hypotheses based on theory and should be testable in a mechanistic modeling framework that is only now being developed.