Premium
Retention and Transport of Nutrients in a Third‐Order Stream in Northwestern California: Hyporheic Processes
Author(s) -
Triska Frank J.,
Kennedy Vance C.,
Avanzino Ronald J.,
Zellweger Gary W.,
Bencala Kenneth E.
Publication year - 1989
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.2307/1938120
Subject(s) - hyporheic zone , nitrate , chloride , hydrology (agriculture) , interflow , groundwater , saturation (graph theory) , environmental science , permeability (electromagnetism) , soil science , sink (geography) , stream restoration , streams , geology , environmental chemistry , chemistry , geotechnical engineering , computer network , biochemistry , mathematics , organic chemistry , cartography , combinatorics , membrane , computer science , geography
Chloride and nitrate were coinjected into the surface waters of a third—order stream for 20 d to examine solute retention, and the fate of nitrate during subsurface transport. A series of wells (shallow pits) 0.5—10 m from the adjacent channel were sampled to estimate the lateral interflow of water. Two subsurface return flows beneath the wetted channel were also examined. The conservative tracer (chloride) was hydrologically transported to all wells. Stream water was >88% of flow in wells <4 m from the wetted channel. The lowest percentage of stream water was 47% at a well 10 m perpendicular to the stream. Retention of solutes was greater in the hyporheic zone than in the channel under summer low—flow conditions. Nominal travel time (the interval required for chloride concentration to reach 50% of the plateau concentration) was variable by well location, indicating different flow paths and presumably permeability differences in subsurface gravels. Nominal travel time was M 24 h for wells <5 m from the wetted channel. Coinjected nitrate was not conservative. Two wells were significantly (P < .05) higher in nitrate—N than would be predicted from chloride, while four were significantly lower. Wells 2.0—4.0 m from the wetted channel tended to have higher nitrate concentration than predicted, whereas nitrate sink locations tended to have transport distances >4.3 m. The capacity of the hyporheic zone for transient solute storage and as potential biological habitat varies with channel morphology, bed roughness, and permeability. A conceptual model that considers the groundwater—stream water interface as the fluvial boundary is proposed. Emerging paradigms of the riverine network should consider the hyporheic zone and associated nutrient cycling as an integral component of fluvial structure and function.