z-logo
Premium
Estimation and Use of a Multivariate Parametric Model for Simulating Heteroskedastic, Correlated, Nonnormal Random Variables: The Case of Corn Belt Corn, Soybean, and Wheat Yields
Author(s) -
Ramírez Octavio A.
Publication year - 1997
Publication title -
american journal of agricultural economics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.949
H-Index - 111
eISSN - 1467-8276
pISSN - 0002-9092
DOI - 10.2307/1243953
Subject(s) - heteroscedasticity , kurtosis , multivariate statistics , mathematics , skewness , econometrics , statistics , parametric statistics , univariate , correlation , geometry
This study develops a multivariate, nonnormal density function that can accurately and separately account for skewness, kurtosis, heteroskedasticity, and the correlation among the random variables of interest. The statistical attributes of the underlying random variables and correlation processes are examined. The potential applications of this modeling tool are discussed and exemplified by analyzing and simulating Corn Belt corn, soybean, and wheat yields. While corn and soybean yields are found to be skewed and kurtotic and exhibit different variances through time, wheat yields appear normal but also heteroskedastic. A strong correlation is detected between corn and soybean yields.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here