z-logo
open-access-imgOpen Access
Trametes suaveolens as ligninolytic enzyme producer
Author(s) -
Aleksandar Knežević,
Ivan Milovanović,
Mirjana Stajić,
Jelena Vukojevic
Publication year - 2013
Publication title -
zbornik matice srpske za prirodne nauke
Language(s) - English
Resource type - Journals
eISSN - 2406-0828
pISSN - 0352-4906
DOI - 10.2298/zmspn1324437k
Subject(s) - laccase , abts , fermentation , lignin , food science , solid state fermentation , lignin peroxidase , sawdust , chemistry , enzyme assay , peroxidase , manganese peroxidase , botany , enzyme , biology , biochemistry , antioxidant , organic chemistry , dpph
Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L) was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14) and Mn-independent peroxidase (1113.7 U/L on day 7). Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here