
Linear programming problems with some multi-choice fuzzy parameters
Author(s) -
Avik Pradhan,
Biswal Prasad Mahendra
Publication year - 2018
Publication title -
yugoslav journal of operations research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 21
eISSN - 1820-743X
pISSN - 0354-0243
DOI - 10.2298/yjor160520004p
Subject(s) - defuzzification , mathematical optimization , fuzzy number , fuzzy logic , linear programming , mathematics , nonlinear programming , fuzzy set operations , integer programming , computer science , fuzzy set , nonlinear system , artificial intelligence , physics , quantum mechanics
In this paper, we consider some Multi-choice linear programming (MCLP) problems where the alternative values of the multi-choice parameters are fuzzy numbers. There are some real-life situations where we need to choose a value for a parameter from a set of different choices to optimize our objective, and those values of the parameters can be imprecise or fuzzy. We formulate these situations as a mathematical model by using some fuzzy numbers for the alternatives. A defuzzification method based on incentre point of a triangle has been used to find the defuzzified values of the fuzzy numbers. We determine an equivalent crisp multi-choice linear programming model. To tackle the multi-choice parameters, we use Lagranges interpolating polynomials. Then, we establish a transformed mixed integer nonlinear programming problem. By solving the transformed non-linear programming model, we obtain the optimal solution for the original problem. Finally, two numerical examples are presented to demonstrate the proposed model and methodology.