
Turbulent natural-convection heat transfer in a square cavity with nanofluids in presence of inclined magnetic field
Author(s) -
Mohamed El Hattab,
Zakaria Lafdaili
Publication year - 2022
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci210825326e
Subject(s) - nanofluid , hartmann number , nusselt number , natural convection , rayleigh number , materials science , streamlines, streaklines, and pathlines , heat transfer , mechanics , turbulence , finite volume method , volume fraction , thermodynamics , reynolds number , physics , composite material
In this paper, we present a numerical study of turbulent natural convection in a square cavity differentially heated and filled with nanofluid and subjected to an inclined magnetic field. The standard k-? model was used as the turbulence model. The transport equations were discretized by the finite volume method using the SIMPLE algorithm. The influence of the Rayleigh number, the Hartmann number, the orientation angle of the applied magnetic field, the type of nanoparticles as well as the volume fraction of nanoparticles, on the hydrodynamic and thermal characteristics of the nanofluid was illustrated and discussed in terms of streamlines, isotherms and mean Nusselt number. The results obtained show that the heat transfer rate increases with increasing Rayleigh number and orientation angle of the magnetic field but it decreases with increasing Hartmann number. In addition, heat transfer improves with increasing volume fraction and with the use of Al2O3 nanoparticles.