
Boiling-condensation heat transfer and flow characteristics in ultrathin limited enclosed space based on numerical simulation and visualization experiment
Author(s) -
Cong Li,
Ying Huang,
Jianping Tan
Publication year - 2022
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci210622348c
Subject(s) - heat transfer , condensation , boiling , mechanics , flow visualization , materials science , heat transfer coefficient , evaporation , thermodynamics , heat flux , flow (mathematics) , physics
Boiling-condensation heat transfer in ultrathin flat heat pipes are complicated and difficult to observe. In this study, a visualization experiment and simulation analysis in an ultrathin limited enclosed space were carried out. Width of the ultrathin enclosed space was 1 mm, with anhydrous ethanol as the working medium. The enclosed space was oriented vertically with the heating section on the bottom and the cooling section on the top. Flow characteristics of the anhydrous ethanol were photographed using a high-speed camera through the quartz cover. The boiling-condensation heat transfer and fluid flow in the limited enclosed space were simulated. Effective heat transfer coefficient calculated based on the experimental data varied from 1.0 to 1.1 W/?C, while that of the inner wall obtained by the simulation varied within the range of 1.068-1.076 W/?C. The maximum error was 2.9%, which verified the reliability of the simulation results. By analyzing the pressure change in condensation section, it was found that the boiling-condensation heat released in the enclosed space changed periodically, because of the growth and bursting of bubbles and falling of the working medium due to gravity. Restricted by the thickness, the bubbles produced by boiling of the working medium grew in flat and irregular shapes, promoting the upward movement of the rest of the liquid working medium, and a liquid film was formed at the heated inner surface for evaporation heat transfer, which enhanced the heat transfer capacity of the heating section.