Open Access
“near wall” combustion model of spark ignition engine
Author(s) -
Wu Wei
Publication year - 2021
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci2106189w
Subject(s) - combustion , ignition system , thermodynamics , spark ignition engine , materials science , mechanics , hydrocarbon , heat transfer , cylinder , homogeneous charge compression ignition , diffusion , spark (programming language) , combustion chamber , chemistry , physics , mechanical engineering , organic chemistry , programming language , computer science , engineering
This paper has illustrated a "near wall" combustion model for a spark ignition engine that was included in a two-zone thermodynamic model. The model has calculated cylinder pressure and temperature, composition, as well as heat transfer of fresh and combustion gas. The CO submodel used a simplified chemical equation to calculate the dynamics of CO during the expansion phase. Subsequently, the HC submodel is introduced, and the post-flame oxidation of un-burned hydrocarbon was affected by the reaction/diffusion phenomenon. After burning 90% of the fuel, the hydrocarbon reaction dominates at a very late stage of combustion. This modeling method can more directly describe the ?near wall? flame reaction and its contribution to the total heat release rate.