z-logo
open-access-imgOpen Access
Design and verification of ultra-high temperature lithium heat pipe based experimental facility
Author(s) -
Chaoqun Hu,
Dehao Yu,
Meisheng He,
TaoSheng Li,
Jie Yu
Publication year - 2022
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci210528263h
Subject(s) - heat pipe , nuclear engineering , lithium (medication) , materials science , heat transfer , thermodynamics , water cooling , computational fluid dynamics , mechanics , working fluid , mechanical engineering , engineering , physics , medicine , endocrinology
Lithium heat pipe has broad applications in heat pipe cooled reactors and hypersonic vehicles due to its ultra-high working temperature which is around 1700 K. In this paper, a lithium heat pipe based experimental facility has been designed to test the heat transfer performance of the lithium heat pipe. A simplified mathematical model of heat pipe has been implemented into a CFD approach, which is used to verify the design of lithium heat pipe and its experimental facility. Results showed that the CFD approach is in good agreements with some well-known existing models and experimental data, and deviation between the results is within 5% range. The adjustment range of mixed gas thermal resistance and cooling water flow rate was obtained by analyzing the effects of different cooling conditions on the performance of the experimental facility. It is necessary to ensure the cooling water flow rate is above 0.11l/h to prevent water boiling when the heating power is10kW around, and the optimal proportion of helium is 70% -90%.The operation characteristics of the lithium heat pipe under unsteady state with varying heating power were simulated numerically. The results show that the proportion of helium must be less than 60% for normal operation of the lithium heat pipe. This work provides a reference and numerical verification for the design of lithium heat pipe based experimental facility, which can be used to reveal the heat transfer mechanisms of the lithium heat pipe during the experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here