
Separate and combined integration of Kalina cycle for waste heat recovery from a cement plant
Author(s) -
Ehab S. Mahmoud,
Mohamed Rady,
Abdullah Abuhabaya,
Adel Elsamahy
Publication year - 2022
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci210418230m
Subject(s) - air preheater , waste heat recovery unit , environmental science , kiln , waste management , waste heat , heat recovery ventilation , combined cycle , turbine , heat exchanger , engineering , mechanical engineering
This article reports on using Kalina cycle for waste heat recovery (WHR) from a cement plant. Two design alternatives have been investigated using separate and combined WHR from the kiln, cooler, and preheater. Measurements and analysis have been performed to determine the waste heat from different stages of the cement manufacturing lines. The annual heat losses from the kiln surface, preheater, and the cooler are estimated as 79.23, 44.32, and 43.6 GWh at average temperatures of about 314, 315, and 254 ?, respectively. Analysis and optimization of using Kalina cycle for Waste Heat Recovery (WHR) from the kiln shell, cooler and preheater to produce electricity have been carried out using ASPEN software. Parametric study has been carried out to determine the design parameters for Kalina cycle including turbine inlet pressure, mass flow rate, and ammonia water concentration. The value of net power output using combined WHR is about 7.35 MW as compared to 6.86 using separate WHR design with a total cost saving of about 23%.