
Periodic mixed convection flow along the surface of a thermally and electrically conducting cone
Author(s) -
Asifa Ilyas,
Muhammad Ashraf
Publication year - 2020
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci20s1225i
Subject(s) - amplitude , prandtl number , magnetic field , mechanics , physics , heat transfer , convection , combined forced and natural convection , flow (mathematics) , oscillation (cell signaling) , condensed matter physics , convective heat transfer , optics , natural convection , quantum mechanics , biology , genetics
The main aim of the present work is to highlight the significances of periodic mixed convection flow and heat transfer characteristics along the surface of magnetized cone by exerting magnetic field exact at the surface of the cone. The numerical simulations of coupled non-dimensional equations are computed in terms of velocity field, temperature and magnetic field concentration and then used to examine the periodic components of skin friction, ?w, heat transfer, qw, and current density, jw, for various governing parameters. A nice periodic behavior of heat transfer qw is concluded for each value of mixed convection parameter, ?, but maximum periodicity is sketched at ? = 50. It is also computed that the lower value of magnetic Prandtl number ? = 0.1 gets poor amplitude in current density but highest amplitude is sketched for higher ? = 0.5. The behavior of heat and fluid-flow in the pres?ence of aligned magnetic field is associated with the phase angle and amplitude of oscillation. It is also noted that due to the increase in magnetic force parameter, ?, there are wave like disturbances generate within the fluid layers. These disturbances are basically hydromagnetic waves which becomes more prominent as the strength of magnetic force parameter is increased.