
Hypercomplex systems and non-Gaussian stochastic solutions of χ-Wick-type (3+1)-dimensional modified Benjamin-Bona-Mahony equation
Author(s) -
Mohammed Zakarya
Publication year - 2020
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci20s1209z
Subject(s) - trigonometry , hyperbolic function , hermite polynomials , gaussian , mathematics , type (biology) , exponential function , white noise , mathematical analysis , exponential type , physics , quantum mechanics , ecology , statistics , biology
In this paper, we seek non-Gaussian stochastic solutions of ?-Wick-type stochastic (3+1)-dimensional modified Benjamin-Bona-Mahony equations. Using the generalized modified tanh-coth method, the connection between hypercomplex system and transforming white noise theory, ?-Wick product and ?-Hermite transform, we generate a new set of exact travelling non-Gaussian wave solutions for the (3+1)-dimensional modified Benjamin-Bona-Mahony equations. This set contains solutions with non-Gaussian parameters of exponential, hyperbolic, and trigonometric types.