z-logo
open-access-imgOpen Access
Comparison of mathematical models to estimate the thermal conductivity of TiO2-water based nanofluid: A review
Author(s) -
Bhrant Kumar Dandoutiya,
Arvind Kumar
Publication year - 2022
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci201026224d
Subject(s) - nanofluid , thermal conductivity , heat transfer , materials science , thermodynamics , working fluid , ethylene glycol , heat transfer fluid , volume fraction , mechanics , composite material , physics , chemical engineering , engineering
Heat transfer is a desirable phenomenon in many industries such as in refrigeration, transportation, power generation, cell preservation, incubator, metallurgy and material processing, health services, etc. Different types of fluids like water, oil, ethylene glycol etc. are being used as a heat transfer medium. Water is a commonly used as working fluid for transfer of heat. Nanofluids are developed by adding nanosized particle(s) in existing fluid to improve the heat transfer rate. Thermal conductivity of the nanofluid is an important parameter in estimation of heat transfer rate. Different types of mathematical models were developed by various investigators to predict the thermal conductivity of the nanofluids. In this review paper, the theoretical and mathematical model(s) have been compared to predict the thermal conductivity of nanofluids. The experimental data have been collected from literature and compared with Maxwell model, Hamilton and Crosser model, Maxwell-Garnetts model, Pak Cho model, Timofeeva et al. model, Li and Peterson model, Bhattacharya et al. model, respectively in detail. It has been observed that the prediction with the help of the mathematical models is good when the value of volume fraction was less than 0.01.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here