z-logo
open-access-imgOpen Access
Analysis of temperature drops on the wall thickness of a supercritical boiler water-wall tube
Author(s) -
Wiesław Zima
Publication year - 2019
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci19s4091z
Subject(s) - mechanics , boiler (water heating) , supercritical fluid , heat transfer , thermal conduction , materials science , working fluid , thermal , thermodynamics , physics , composite material
The paper presents selected results of numerical computations related to simulations of a supercritical power boiler evaporator operation. A detailed analysis is carried out of temperature drops on the thickness of the water-wall tube and the tube fin. A comparison is also made between the results obtained at the fin division into one and two control volumes. The tube cross-sections analysed along the tube length and including the fins are divided into 24 control volumes, for which 2-D transient heat conduction equations are formulated. The 1-D equations describing the principles of mass, momentum, and energy conservation are solved on the side of the working fluid. A convective condition, described by an empirical heat transfer coefficient, is set on the water-wall tube inner surface. The developed mathematical model is a distributed parameter model. The numerical computations are performed for a boiler operating in a power plant in Poland. The analysis takes account of the non-uniformity of the furnace chamber thermal load along its height.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here