
Deformation properties of self-adapting wind turbine blades numerical approach and optimization
Author(s) -
Dong Xiao,
Li Qiu,
Qiang Cen
Publication year - 2019
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci1904397c
Subject(s) - wind speed , turbine , torque , wind power , rotational speed , deformation (meteorology) , turbine blade , blade pitch , blade (archaeology) , structural engineering , mechanical engineering , computer science , automotive engineering , marine engineering , materials science , engineering , meteorology , physics , electrical engineering , composite material , thermodynamics
All wind-driven generators need to be equipped with brakes to ensure operational control and safety. Many methods are available to avoid over-speed of the blower. This paper establishes a mechanics model to investigate each point on turbine blades, which are such designed that they would change shape in high winds to reduce the frontal area through adaptive and flexible deformation. In this way, high wind speeds will cause deformation of the blades and decrease of the rotational speed, as a result the turbine slows down. A numerical analysis of the fluid in the fan housing and a force analysis of the blades are performed, and numerical results are used to design the non-uniform arrangement of the hybrid glass/carbon fiber. A wind tunnel experiment is performed on the new blade design. The experimental results show that the new blade achieves an improvement in its mechanical properties and is able to adaptively adjust the torque. During the operation of the wind-driven generator, the new blade could effectively broaden the operational range of wind speeds, thereby improving the power generation when the wind speed is low. A generator without a brake stalls when the wind speed exceeds 13 m/s. After the adoption of the self-adaptive blade made up of the uniform-section complex textile material, the power set shows reduction of noise, avoidance of blade runaway, improvement of the efficiency of the power generation, decrease of cost and enhancement of blade consistency.