z-logo
open-access-imgOpen Access
Fluid dynamics assessment of the Tesla turbine rotor
Author(s) -
Giampaolo Manfrida,
Lorenzo Talluri
Publication year - 2019
Publication title -
thermal science/thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci160601170m
Subject(s) - turbine , rotor (electric) , power (physics) , computer science , parametric statistics , kinetic energy , mechanical engineering , electricity generation , maximum power principle , mechanics , physics , engineering , classical mechanics , mathematics , statistics , quantum mechanics
The Tesla turbine seems to offer several points of attractiveness when applied to low-power applications. Indeed, it is a simple, reliable, and low cost machine. The principle of operation of the turbine relies on the exchange of momentum due to the shear forces originated by the flow of the fluid through a tight gap among closely stacked disks. This turbine was firstly developed by Tesla at the beginning of the 20th century, but it did not stir up much attention due to the strong drive towards large centralized power plants, on the other hand, in recent years, as micro power generation gained attention on the energy market place, this original expander raised renewed interest. The mathematical model of the Tesla turbine rotor is revised, and adapted to real gas operation. The model is first validated by comparison with other assessed literature models. The optimal configuration of the rotor geometry is then investigated running a parametric analysis of the fundamental design parameters. High values of efficiency (isolated rotor) were obtained for the optimal configuration of the turbine, which appears interesting for small-scale power generation. The rotor efficiency depends on the configuration of the disks, particularly on the gap and on the outlet diameter, which determines largely the kinetic energy at discharge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here